MAHESH TUTORIALS SCIENCE								
00 – 00 Q. Booklet Se				erial No: 310515		0515		
Te	st No :	1201	3 Hrs.					Q. Booklet Version : 11
				<u>Hints &</u>	Solu	tions	<u>.</u>	
		PA	ART A - PHYSIC	5				
1.	b)	$\frac{\mathbf{R}}{\sqrt{2}}$ The elements of the elements o	ectric field inte nly charged ring	ensity due to an g at any point an	5.	a) ∵	$\frac{\mathbf{8q}_{2}\mathbf{q}}{\mathbf{4\pi} \in}$ ΔU_{net} $q_{1} ur$ ΔU_{12}	$\frac{l_3}{o} = \Delta U_{12} + \Delta U_{23} + \Delta U_{13}$ t q ₂ or q ₃ doesn't charge distance, = $\Delta U_{13} = 0$
		the axi $E(x) = \frac{1}{2}$ Solve f (Maxim	al line is $\frac{Qx}{4\pi \epsilon_0 (x^2 + R^2)^{3/2}}$ for $\frac{d(E(x))}{dx} = 0$ ha)	we get $x = \frac{R}{\sqrt{2}}$			∆U ^{net}	$= \frac{q_2 q_3}{4\pi \epsilon_0} \left[\frac{1}{(1/10)} - \frac{1}{(5/10)} \right]$ $= \Delta U_{23}$ $= \frac{8q_2 q_3}{4\pi \epsilon_0}$
2.	d) ∴	-120v Since p lar add V _{net} = V =	potential at any ition of all the x $V_x + V_y$; As $V_x = -$ $\left(-\int_0^3 E_x dx\right) + \left(-\int_0^3 E_x dx\right)$	location is a sca- , y, z parts of it. - $\int E_x dx$ $\int_0^2 E_y d_y$; given $Ex = 20\hat{i}$	6.	c) ∴	180° Any of is in weigh 9 _{effecti} In the to the $\theta = 13$	object or system in a satellite a which a stable orbit would experience at lessness i.e. we = 0 e absence of gravity, the charges go e maximum possible separation. 80 ⁰
3.	d)	= -120x 8.5 × 1 T = P ×	V. $0^{-26} \mathbf{Nm}$ E ⇒ T _{max} = PE	$Ey = 30\hat{j}$	7.	d)	none The c and t trosta desta	e of these decribed system is that of a dipole there are xO rull points in the elec atic firld of a dipole for any finite ance.
4.	c)	$\frac{q \ln 2}{4\pi \epsilon_0}$ Potenti charges $V = \frac{1}{4\pi}$	= (3.4) $= 8.52x0al at the origins is\frac{q}{\epsilon_0} x_0 \left(\frac{1}{x_0} - \frac{1}{2x_0}\right)$	× 10 ⁻³⁰) (2.5 × 10 ⁴) × 10 ⁻²⁶ Nm due to all the + $\frac{1}{3x_0}$)	8.	с)	A , C , I Let t separ be F_2 The f cares Case	B he force between, the e ⁻ and p ⁺ a ration 'd' be 'F,' and at separation 'D 2. free body iopram of the e- in all ' are show. (A): $\xrightarrow{F_1} \xrightarrow{F_2} \therefore \xrightarrow{F_{net}} = F_1 + F_2$ (B): $\xleftarrow{F} \xrightarrow{F} \therefore \xrightarrow{F} = F_2 - F.$

Case (C):
$$\bigvee_{F_1} \xrightarrow{F_2} \therefore \xrightarrow{F_{net}} F_2$$

= $\sqrt{F_1^2 + F_2^2}$
 $\therefore \xrightarrow{F_{net}} \xrightarrow{F_{net}} \xrightarrow{F_{net}} \xrightarrow{F_{net}} \xrightarrow{F_{net}}$

(Note : Sum of two side of a triangle is greater than the third side, which inturn is greater than the difference of the sides.)

9. **a)**

Let the charges be +q and -q, if 75% of charge (4) of q is given to -q, the final

charges in the system are
$$\frac{q}{4}$$
 and $\frac{-q}{4}$

$$\therefore \qquad F^1 = \frac{F}{16}$$

F

16

10. **b) CB**

(Note : Consider the atternate charges i.e. (q,3q) and (2q, 4q) which effectively reduce t o (0, 2q) and (0, 2q) respectively. The aformentioned statement is true for fieldes not potentials.)

11. a) $k \frac{Q}{r^2}$

:..

From the principle of superposition. Field due to (n - 1) charges = Field due to x charge – Field due to missing charge

$$= O - \frac{kq}{r^2}$$

 E_{net} due to (n - 1) charges is of the magnitude $\frac{kq}{r^2}$

12. d) 20 N/C The displacement along X-axis is 2 Cos $60^{\circ} = 1m$

$$W = F.S = (qE) S (Cos O^{0})$$
$$= (qE) (lm)$$
$$\therefore \qquad 4 = (0.2) E$$
$$\Rightarrow \qquad E = 20N/C$$

13. **b**)
$$\frac{\mathbf{E}^2 \mathbf{q}^2 \mathbf{t}^2}{2\mathbf{m}}$$

...

14.

15.

16.

a)

...

Force felt in uniform electric field = qE

$$\therefore \quad \text{Acceleration} = \frac{qE}{m}$$

∴ Instantaneous velocity at any time 't' is V = u + at

$$V = O + \left(\frac{qE}{m}\right) t$$
$$KE = \frac{1}{2} mv^{2} = \frac{q^{2}E^{2}t}{2m}$$

Inside any conductor, the contribution to the field by any external charge is zero.

The field inside is only due to the charge placed at the centre i.e. q. which is governed by the inverse square law.

b) A, B and C

One can assume the two pairs of charges provided $(_+q, -v)$ and the other (+q, -q) as two dipoles.

The potential due to a dipole is zero on its perpendicular bisector i.e. ABC.

17. a) 8 V

Constant field \Leftrightarrow line only varying potential.

....

...

$$F = qE \qquad \therefore \qquad E = 400 \text{ N/C.}$$
$$\therefore \qquad \Delta V = \int_{a}^{a+2} E.dx$$
$$= E \int_{a}^{a+2} dr$$
$$= (400) \left(\frac{2}{100}\right) = 8 \text{ V.}$$

18. d) – 1.52 × 10⁵ V

Clearly OB = OC = $\frac{1}{2}$ m OA = $\frac{\sqrt{3}}{2}$ m \therefore QA = -6μ C; QB = -2μ C; Q_c = -3μ C \therefore Vat 0 = $\frac{K(Q_{A})}{OA} + \frac{K(Q_{B})}{OB} + \frac{K(Q_{c})}{OC}$ = -1.5×10^{5} V

19. c)
$$\frac{\mathbf{q}}{2\pi\varepsilon_0}$$

 \therefore Vat $0 = \mathrm{Kq}\left(\frac{1}{1} + \frac{1}{2} + \frac{1}{4} + \cdots\right)$
 $= \frac{\mathbf{q}}{2\pi\varepsilon_0}$

20. **d**) **C**

Notice that $(5_a, 0)$ and $(-3_a, 4_a)$ lie on a circle with origin as center and radius 5a. This circle is an equipotential surface for the given 20mC charge placed at its center.

∴ **∆**V = 0

 21. d) F / 8 The field at the end on position is inbersely praportional to r³.

$$: \qquad F^1 = \frac{F}{8}$$

22. d) 2pE W electric field = -p.E ∴ W external source = +p.E = pE (for the first 90°)

and pE for the next 90° as well

 $W_{net} = 2pE$

(Note : This is the work done by extrnal source Not the field)

23. a) a force and a torque

Consider the dipole, there is a field E_1 making an angle of θ_1 with the dipole at +q and field E_2 making an angle of θ_2 at -q.

$$\therefore \quad F_{net} = \overline{F_1} + \overline{F_2} = q\overline{F_1} + q\overline{F_2} \neq 0.$$

$$\left(as \overline{E_1} \neq \overline{E_2}\right)$$

$$Tnet = \left(\frac{P}{2}\right) \times \overline{E_1} + \frac{P}{2} \times \overline{E_2}$$

$$\neq 0$$

24. **b)** $3.71 \times 10^5 V/m$ $q = 6.75 \mu C; F = 2.5 N = qE$ $as E = \frac{\partial V}{\partial r} = \frac{-\Delta V}{\Delta r}$

(not always, only in special cases. as

in
$$\frac{\Delta y}{\Delta x} = \frac{dy}{dx}$$
 if $y = mx + C$.)
E = 3.71 × 10⁵V/m

25. c) constant throughout the region

 $E = \frac{\partial V}{\partial r}$; if $E = 0 \implies V(r)$ is constant

$$\overline{E_{1}} + \overline{E_{2}} + \overline{E_{3}} = 0 \quad \text{also } qE_{i} = E_{i}$$

$$\therefore \quad \frac{-Kq_{2}}{a^{2}} - \frac{Kq_{2}}{a^{2}} + \frac{-Kq_{1}}{\left(\sqrt{2_{\alpha}}\right)^{2}} = 0$$

$$\therefore \quad \frac{-Kq_{2}}{a^{2}} \left(\sqrt{2}\right) + \frac{Kq_{1}}{2_{\alpha}^{2}} = 0$$

$$\therefore \quad \frac{q_{1}}{q_{2}} = \frac{2\sqrt{2}}{1}$$

27. **a)**

V 6r

Let the holow sphere have a charge q^{-1} $\therefore \qquad \frac{Kq}{3r} - \frac{Kq}{r} = \Delta V$ $\therefore \qquad |\Delta V| = \frac{Kq.(2)}{(3r)} = V$ $\therefore \qquad E \text{ at } 3r = \frac{Kq}{9r^2} = \frac{V}{6r}$

let the equal separation be 'd'

$$\frac{Q}{A} = \frac{-q}{C}$$

$$U_{net} \text{ at } A = U_{AB} + U_{AC}.$$

$$= \frac{KqQ}{d} - \frac{Kqq}{2d}$$
given Unet at +q = 0

$$\therefore \qquad Q = \frac{q}{2}$$
$$\therefore \qquad \text{or } \frac{q}{Q} = \frac{2}{1}i.e.\frac{Q}{V} = \frac{1}{2}$$

29. **a)**
$$\frac{\mathbf{k}}{\mathbf{343}} \left(2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 6\hat{\mathbf{k}} \right) \mathbf{V}/\mathbf{m}$$
$$V = \frac{K}{r} \text{ is of the from } \frac{Kq}{r}$$
$$\therefore \quad E = \frac{-\partial V}{\partial r} = \frac{-\partial \left(\frac{V}{r}\right)}{dr} = \frac{V}{r^2} \left(\hat{r}\right)$$

$$\therefore \quad \text{given } \bar{\mathbf{r}} = 2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 6\hat{\mathbf{k}} \implies |\bar{\mathbf{r}}| = 7$$
$$\therefore \quad \mathbf{E} = \frac{K}{(|\mathbf{r}|)^2} \hat{\mathbf{r}} \text{ also } \hat{\mathbf{r}} = \frac{1}{7} \left(2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 6\hat{\mathbf{k}} \right)$$
$$= \frac{K}{343} \left(2\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + 6\hat{\mathbf{k}} \right) \vee / \mathbf{m}$$

30. c) neutral

2, 3 are simples charges

4, 5 are simples charges

2, 4 attract

∴ 2 and 4 are oppositrly charged. and 1 is attracted by both 2 and 4.

 \therefore 1 must be neutral

65.

d)

PART C - MATHS

61. c) 6

 $2 \sin^{-1} (x) + 3 \sin^{-1} (y) = \frac{5\pi}{2}$ holds only when x = y = 1Substituting in y = Kx - 51 = K - 5K = 6

62. c) 17/6 $\cos^{-1}\left(\frac{4}{5}\right) + \tan^{-1}\left(\frac{2}{3}\right)$ $\Rightarrow \tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{2}{3}\right)$ $\Rightarrow \tan^{-1}\left(\frac{\frac{3}{4} + \frac{2}{3}}{1 - \frac{3}{4} \times \frac{2}{3}}\right)$ $= \tan(\tan^{-1}(17/6))$

63. **c)**

64.

c)
$$\pi$$

 $\tan^{-1}\left(\sqrt{\frac{(ak)}{bc}}\right) + \tan^{-1}\left(\sqrt{\frac{(bk)}{ac}}\right)$
 $= \tan^{-1}\left(\frac{\sqrt{\frac{k}{abc}}(a+b)}{1-\frac{k}{c}}\right)$
 $\Rightarrow \pi - \tan^{-1}\left(\sqrt{\frac{kc}{ab}}\right)$
As $\tan^{-1}(a) + \tan^{-1}(b) = \pi + \tan^{-1}\left(\frac{a+b}{1-ab}\right) (ab > 1)$
 $\Rightarrow \tan^{-1}\left(\sqrt{\frac{ak}{bc}}\right) + \tan^{-1}\left(\sqrt{\frac{bk}{ac}}\right) + \tan^{-1}\left(\sqrt{\frac{kc}{ab}}\right)$
 $= \pi$
d) 11
 $(\tan(\sec^{-1}(2)))^2 + (\cot(\csc^{-1}(3))^2)$
 $= (\tan(\tan^{-1}(\sqrt{3})))^2 + (\cot(\cot^{-1}(\sqrt{8})))^2)$
 $= 3 + 8$

= 11

 $3\pi/4$ $\cos^{-1} (\cos(2 \cot^{-1}(\sqrt{2} - 1)))$ $= \cos^{-1} (\cos(2 \tan^{-1}(\sqrt{2} + 1)))$ $2 \tan^{-1} (\sqrt{2} + 1) = \pi + \tan^{-1} \left(\frac{2(\sqrt{2} + 1)}{1 - (\sqrt{2} + 1)^2}\right)$ $= \pi + \tan^{-1} \left(\frac{2(\sqrt{2} + 1)}{1 - (\sqrt{2} + 1)^2}\right)$

$$= \pi + \tan^{-1} \left(\frac{2(\sqrt{2} + 1)}{-2 - 2\sqrt{2}} \right)$$
$$= \pi - \frac{\pi}{4}$$
$$= \frac{3\pi}{4}$$
$$= \cos^{-1} \left(\cos \left(\frac{3\pi}{4} \right) \right)$$
$$= \frac{3\pi}{4}$$

c) 3 $\cos^{-1}(\alpha) + \cos^{-1}(\beta) + \cos^{-1}(\nu) = 3\pi$ $\Rightarrow \quad \alpha = \beta = \nu = -1$ $\alpha\beta + \beta\nu + \nu\alpha = 3$

67. **b**) π/3

66.

$$\sin^{-1} (x) + \sin^{-1} (y) = \frac{2\pi}{3}$$
$$\cos^{-1}(x) + \cos^{-1}(y) = \pi - (\sin^{-1}(x) + \sin^{-1}(y))$$
$$= \pi - \frac{2\pi}{3}$$
$$\pi$$

d) 3

⇒

68.

$$\sin^{-1}\left(\frac{x}{5}\right) + \cos^{-1}\left(\frac{5}{4}\right) = \frac{\pi}{2}$$
$$\sin^{-1}\left(\frac{x}{5}\right) + \sin^{-1}\left(\frac{4}{5}\right) = \frac{\pi}{2}$$
$$\sin^{-1}\left(\frac{x}{5}\right) + \cos^{-1}\left(\frac{3}{5}\right) = \frac{\pi}{2}$$
$$x = 3$$

... 5 ...

69. c) x = 0 $\tan^{-1}(1 + x) + \tan^{-1}(1 - x) = \frac{\pi}{2}$ $\tan^{-1}(1 + x) + \cot^{-1}\left(\frac{1}{1 - x}\right) = \frac{\pi}{2}$ $\Rightarrow \quad 1 + x = \frac{1}{1 - x}$ $\Rightarrow \quad 1 - x^2 = 1$ $\Rightarrow \quad x^2 = 0$ $\Rightarrow \quad x = 0$

70. **b) 0.96**

$$2\sin^{-1}\left(\frac{4}{5}\right) = \sin^{-1}\left(2\times\frac{4}{5}\times\frac{3}{5}\right)$$
$$= \sin^{-1}(0.96)$$
$$= \sin(\sin^{-1}(0.96))$$
$$= 0.96$$

71. **b)** unique solution $\sin^{-1}(x) - \cos^{-1}(x) = \frac{\pi}{6}$ $\sin^{-1}(x) - \cos^{-1}(x) = \frac{\pi}{2}$ $\Rightarrow \quad x = \frac{\sqrt{3}}{2}$

72. d) $2\pi - x$ $\pi \le x \le 2\pi$ $\cos^{-1}(\cos x) = \cos^{-1}(\cos (2\pi - x))$ $= 2\pi - x$

73. c) $\tan^{-1}(0.3)$ $\tan(x + y) = 33$ $\tan x = 3$ $\frac{\tan x + \tan y}{1 - \tan x \tan y} = 33$ $\frac{3 + \tan y}{1 - 3 \tan x} = 33$

 $\Rightarrow \quad \tan y = 0.3$ $y = \tan^{-1} (0.3)$

74. **b**) 3π/4 $\cot^{-1}(2) + \cot^{-1}(3) = \frac{\pi}{4}$ Third angle = $\pi - \frac{\pi}{4} = \frac{3\pi}{4}$ 75. **a)** x = y = z = 1 $x^{100} + y^{100} + z^{100} - \frac{9}{x^{101} + y^{101} + z^{101}}$ $\Rightarrow \quad 3 - \frac{9}{3}$ $\Rightarrow \quad 3 - 3 = 0$ 76. **d**) $\lim_{x\to 0} \frac{\sin x^{13}}{(\sin x)^{17}}$ $= \lim_{x \to 0} \frac{\frac{\sin x^{13}}{x^{13}}}{\left(\frac{\sin x}{x}\right)^{13} \sin^4 x}$ $\Rightarrow \quad \lim_{x \to 0} \frac{1}{\sin^4 x} = \infty$ 77. b) is -1/3 $x \to \infty \frac{x \sin\left(\frac{1}{x}\right) - 2}{\frac{1}{x^2} + 3}$ $\lim_{x \to \infty} \frac{\frac{\sin\left(\frac{1}{x}\right)}{\frac{1}{x} - 2}}{\frac{1}{\frac{1}{x} + 3}} \Rightarrow \frac{1 - 2}{3} = \frac{-1}{3}$ ⇒ 78. None of these d)

L.H.L = $\lim_{x \to 0} \frac{\sin[x]}{[x]} = \sin 1$

R.H.L is not in the domain = sin1

... 6 ...

79. **b**)
$$\pi$$

$$\lim_{x \to 0} \frac{\sin(\pi \cos^2 x)}{x^2}$$
Applying L. Hospital

$$\Rightarrow \lim_{x \to 0} \frac{\cos(\pi \cos^2 x)\pi(2\cos x)(-\sin x)}{2x}$$

$$\Rightarrow \pi$$

80. d) None of these

L.H.L = $\lim_{x \to 0} \frac{e^{\{x\}} - 1}{x} = \infty$ R.H.L = $\lim_{x \to 0^+} \frac{e^{\{x\}} - 1}{x} = \lim_{x \to 0^+} \frac{e^x - 1}{x} = 1$

Limit does not exist.

81. a) 10/7,4/7

$$\lim_{x \to 0} \frac{\tan 3x}{\sin 7x} = \lim_{x \to 0} \frac{\frac{\tan 3x}{x}}{\frac{\sin 7x}{x}}$$
$$= \frac{3}{7}$$
$$|k-1| = \frac{3}{7}$$
$$k = \frac{10}{7}, \frac{4}{7}$$

82. c) e^{ab}

 \Rightarrow

⇒

⇒

⇒

 $\lim_{x \to 0} (\cos x + a \sin bx)^{\frac{1}{x}}$ $e^{\lim_{x \to 0} \frac{\cos x - 1 + a \sin bx}{x}}$ $e^{\lim_{x \to 0} \frac{-\sin x + ab \cos bx}{1}}$ e^{ab}

83. c) does not exists

$$\lim_{x \to 0} \frac{\sqrt{\frac{1 - \cos 2x}{2}}}{x}$$

 $\Rightarrow \lim_{x \to 0} \frac{|\sin x|}{x}$

L.H.L = -1 R.H.L = 1 Limit does not exist

84. d) None of these $\lim_{x \to 0} \left(\sqrt{x^2 + 1 + x} - x \right) = 1$

85. **c)** −8√3

 $\lim_{x \to \frac{\pi}{3}} \frac{\tan^2 x - 3}{\cos\left(\pi + \frac{\pi}{6}\right)} \quad [\text{Applying L.Hospital rule}]$

$$\Rightarrow \lim_{x \to \frac{\pi}{3}} \frac{2 \tan x \sec^2 x}{-\sin\left(x + \frac{\pi}{6}\right)}$$

$$\Rightarrow -8\sqrt{3}$$

86. **b**) $\frac{1}{\sqrt{3}}$

⇒

⇒

⇒

$$\lim_{x \to \frac{\pi}{3}} \frac{\sin\left(\frac{\pi}{3} - x\right)}{2\cos x - 1} [\text{Applying L.Hospital rule}]$$

$$\lim_{x \to \frac{\pi}{3}} \frac{\cos\left(\frac{\pi}{3} - x\right)(-1)}{-2\sin x}$$
$$\frac{1}{\sqrt{3}}$$

87. d) None of these

 $\lim_{x \to 1} \frac{1 + \log x - x}{1 - 2x + x^2}$ [Applying L.Hospital rule]

$$\lim_{x \to 1} \frac{\frac{1}{x} - 1}{\frac{-2 + 2x}{-2 + 2x}}$$

$$\Rightarrow \qquad \lim_{x \to 1} \frac{1-x}{-2(1-x)x} = \frac{-1}{2}$$

88. c) **2 log 2**

$$\lim_{x \to 0} \frac{x 2^{n} - x}{1 - \cos x}$$

$$\Rightarrow \lim_{x \to 0} \frac{x(2^{x}-1)}{2\sin^{2}\left(\frac{x}{2}\right)}$$
$$\Rightarrow \lim_{x \to 0} \frac{\frac{2^{x}-1}{x}}{2\frac{\sin^{2}\left(\frac{x}{2}\right)}{x^{2}}}$$
$$\Rightarrow 2 \ln 2$$

89. d) None of these

$$\lim_{x \to 0} \left(\frac{\cos 4x - \cos 6x}{\sin^2 5x} \right)$$

$$\Rightarrow \quad \lim_{x \to 0} \frac{2 \sin 5x \sin x}{\sin^2 5x}$$

$$\Rightarrow \quad \lim_{x \to 0} \frac{2 \sin x}{\sin 5x}$$

$$\Rightarrow \quad \frac{2}{5}$$

90. **a) 1**

	$\lim_{x\to\infty}a^{1/x}$	(0 < a < 1)
⇒	1	(As <i>a</i> ^o = 1)